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Abstract

A new protocol is presented that efficiently implements a reliable, causally or-
dered multicast primitive and is easily extended into a totally ordered one. Intended
for use in the Isis toolkit, it offers a way to bypass the most costly aspects of Isis
while benefiting from virtual synchrony. The facility scales with bounded overhead.
Measured speedups of more than an order of magnitude were obtained when the pro-
tocol was implemented within Isis. One conclusion is that systems such as Isis can
achieve performance competitive with the best existing multicast facilities - a finding
conradicting the widespread concern that fault-tolerance mav be unacceptably cst
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1 Introduction

The Isis Toolkit [BJKS88] provides a variety of tools for building software in loosely
coupled distributed environments. The system has been successful in addressing problems
of distributed consistency, cooperative distributed algorithms, and fault-tolerance. At the
time of this writing, ISIS was in use at more than 250 locations worldwide.

Two aspects of Isis are key to its overall approach:

a An implementation of virtually synchronous process groups.

* A collection of atomic multicast protocols with which processes and group members

interact with groups.

Although Isis supports a wide range of multicast protocols, a protocol called CBCAST
accounts for the majority ,f communication in the system; in fact, many of the Isis tools

are little more than invocations of this communication primitive. For example, the Isis

replicated data tool uses a single (asynchronous) CBCAST to perform each update and

locking operation; reads require no communication at all. A consequence is that the cost
of CBCAST represents the dominant performance bottleneck in the Isis system.

The initial Isis CBCAST protocol was costly in part for structural reasons, and in part

because of the protocol used. The implementation was within a protocol server, hence all

CBCAST communication was via an indirect path. Independent of the cost of the proto-

col itself, this indirection was tremendously expensive. With respect to the protocol used,

our initial implementation favored generality over specialization, permitting extremely

flexible destination addressing, and using a piggybacking mechanism that achieved a de-

sired ordering property but required a garbage collection mechanism. On the other hand,
this structure seemed to be the only one capable of supporting a powerful, general set of

programming tools like the ones in our toolkit: simpler protocols often simply overlook
critical forms of functionality, which may explain why so few have entered widespread

use. Particularly valuable to us has been the ability to to support multiple, possibly

overlapping process groups, and virtual synchrony [BJKS88].

The protocol we present her- 's based on a causal ordering protocol originally developed by

Schiper [SES89]. Unlike our previous work, it assumes a preexisting virtually synchronous

programming environment like the one that Isis provides, although using few of its fea-

tures. Further, it supports a relatively restricted form of multicast addressing. Were our
work done outside of the context of Isis, this would seriously limit its generality. In our

implementation, however, messages that do not conform to these restrictions are simply
routed via the old, more costly algorithm. A highly optimized multicast protocol results

that bypasses the old Isis system and imposes very little overhead beyond that of the

message transport layer. The majority of Isis communication satisfies the requirements
of the bypass protocols and hence benefits from our work.

Our protocol uses a timestamping scheme, and in this respect resembles prior work by
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Ladkin [LL86] and Peterson [PBS89]. However, our results are substantially more general.
The most important differences are these:

* Peterson's Psync-based protocol can be used only in systems composed of a single
process group, ours supports multiple, possibly overlapping process groups.

* Both Peterson's and Ladkin's protocols have overhead linear in the number of pro-
cesses that ever participated in the application, which could be large; our overhead
is bounded and small.

Like Peterson's and Ladkin's protocols, our basic protocol provides for message delivery
ordering that respects causality in the sender (CBCAST), but is readily extended into a
more costly protocol that provides a total delivery ordering even for concurrent invocations
(ABCAST).

The bypass protocol suite lets users select the multicast properties desired for an appli-
cation. Choices include a "raw" delivery service achieving extremely high performance
but with minimal reliability guarantees, multicast with atomicity and FIFO delivery, and
causal or total ordering. This approach permits the user to pay for just those reliability
and ordering properties needed by the application.

The paper is structured as follows. Section 2 reviews the multicasting problem and defines
our terminology. Sections 3 and 4 introduce our new technique. Section 5 discussions
extensions of the CBCAST protocol, including the bypass ABCAST protocol. The
costs of our various primitives are measured in Section 6.

2 Execution model

2.1 Basic system model

The system is composed of processes P = {P1,P2,.-.,Pn} with disjoint memory spaces.
Initially, we assume that this set is static and known in advance; later we relax this
assumption. Processes fail by crashing detectably (a fail-stop assumption); notification is
provided by Isis in a manner described below. In many situations, processes will need
to cooperate. For this purpose, they form process groups. Each such group has a name
and a set of member processes; members join and leave dynamically; a failure causes a
departure from all groups to which a process belongs. The members of a process group
need not be identical, nor is there any limit on the number of groups to which a process
may belong. The set of groups is denoted by G = {g1, g2... }. In typical settings, the I'
nirnbhr of groups will be large and processes will belong to several groups.

0Our system model is unusual in assuming an external service that implements the pro- .e.d

cess group abstraction. The interface from a process to this service will not concern us
here, but the manner in which the service communicates to a process is highly relevant.
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A view of a process group is a list of its members. A view sequence for g is a list
viewo (g), view, (), ... , view. (g), where

1. viewo(g) = 0.

2. Vi : viewi(g)_P, where P is the set of all processes in the system.

3. viewi(g) and viewi+i(g) differ by the addition or subtraction of exactly one process.

We assume that some sort of process group service computes new views and communicates
them to the members of the groups involved. Processes learn of the failure of other group
members only through this view mechanism, never through any sort of direct observation.

We assume that direct communication between processes is always possible; the software
implementing this is called the message transport layer. Within our protocols, processes
always communicate using point-to-point and multicast messages; the latter may be trans-
mitted using multiple point-to-point messages if no more efficient alternative is available.
The transport communication primitives must provide lossless, uncorrupted, sequenced
message delivery. Our approach permits application builders to define new transport pro-
tocols, perhaps to take advantage of special hardware. Our initial implementation uses
unreliable datagrams, but has an experimental protocol that exploits ethernet hardware
multicast.

The execution of a process is a partially ordered sequence of events, each corresponding
to the execution of an indivisible action. An acyclic event order, denoted -p reflects
the dependence of events occurring at process p upon one another. The event sendp(m)
denotes the transmission of m by process p to a set of 1 or more destinations dests(m); the
receive event is denoted rcvp(m). We omit the subscript when the context is unambiguous.
If I dests(m)l > 1 we will assume that send puts messages into all communication channels
in a single action that might be interrupted by failure, but not by other send or rcv actions.
We denote by rcvp(viewi(g)) the event by which a process p belonging to g "learns" of
viewi(g).

We distinguish the event of receiving a message from the event of delivery, since this allows
us to model protocols that delay message delivery until some condition is satisfied. The
delivery event is denoted deliver(m) where rcv(m)P-deliver(m).

2.2 Properties required of multicast protocols

Although Isis makes heavy use of virtual synchrony, it will not be necessary to formalize
this property for our present discussion. However, the support of virtual synchrony places
several obligations on the processes in our system. First, when a process multicasts a
message m to group g, dests(m) must be the current membership of g. Secondly, when
the group view changes, all messages sent in the prior view must be "flushed" out of the
sy .em (delivered) before the new view may be used. Finally, messages must satisfy a
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failure atomicity property: if a message m is delivered to any member of a group, and it

stay operational, m must be delivered to all members of the group even if the sender fails

before completing the transmission.

The multicast protocols that interest us here also provide delivery ordering guarantees. As

in [Lam78], we define the potential causality relation for the system, -+, as the transitive
closure of the relation defined as follows:

1. If 3p: e +e', then e--+e'

2. Vm : send(m)-*rcv(m)

CBCAST satisfies a causal delivery property:

If m and m' are CBCAST's and send(m)-*send(m') then

VpE dests( m)ndests(m') : deliver(m)-). deliver(m').

If two CBCAST messages are concurrent, the protocol places no constraints on their

delivery ordering at overlapping destinations.

ABCAST extends the CBCAST ordering into a total one:

If m and m' are ABCAST's then either

1. VpEdests(m)ndests(m') : deliver(m)P_ deliver(m'), or

2. VPEdests(m)ndests(m'): deliver(m')4 deliver(m).

Because the ABCAST protocol orders concurrent events, it is more costly than CB-

CAST; requiring synchronous solutions where the CBCAST protocol admits efficient

asynchronous solutions. Birman and Joseph [BJ89] and Schmuck [Sch88] have exhibited a
large class of algorithms that can be implemented using asynchronous CBCAST. More-

over, Schmuck has shown that in many settings algorithms specified in terms of ABCAST
can be modified to use CBCAST without compromising correctness.

The protocols presented here all assume that processes only multicast to groups that they

are members of, and that all multicasts are to the full membership of a single group.

For demonstrating liveness, we will assume that any message sent by a process is eventually
received unless the sender or destination fails, and that failures are eventually reported

by ISIS.

3 The CBCAST bypass protocol

This section presents two basic CBCAST protocols for use within a single process group
with fixed membership. Both use timestamps to delay messages that arrive out of causal

order. The section that follows extends these schemes and then merges them to obtain a

single solution for use with multiple, dynamic process groups.
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3.1 Timestamping protocols

We begin by describing two protocols for assigning timestamps to messages and for com-
paring timestamps. The protocols are standard except in one respect: whereas most
timestamping protocols count arbitrary "events", the ones defined here count only send
events.

3.2 Logical time

The first timestamping protocol is based on one introduced by [Lam78], called the logical
clock protocol. Each process p maintains an unbounded local counter, LT(p), whicb it
initializes to zero. For each event send(m) at p, p sets LT(p) = LT(p) + 1. Messages
are timestamped with the sender's incremented counter. A process p receiving a message
with timestamp LT(m) sets LT(p) = max(LT(p), LT(m)). As in [Lam78], one can show
that if send(m)-- send(m') then LT(m) < LT(m'). The converse, however, does not hold:
the protocol may order messages that were sent concurrently.

Note that the LT counter for a process is updated at the rcv event, as opposed to the
deliver event, for an incoming message. We make use of this property in the development
below.

3.3 Vector time

A second timestamping protocol is based on the substitution of vector times for the local
counters in the logical time protocol. Vector times were proposed originally in [Mar84];
other researchers have also used them [Fid88,Mat89,LL86,Sch88]; our use of them is moti-
vated by an protocol presented in [SES89]. In comparison with logical times, this protocol

has the advantage of representing -- precisely.

A vector time for a process pi, denoted VT(pi), is a vector of length n (where n = IPI),
indexed by process-id.

1. When pi starts execution, VT(pi) is initialized to zeros.

2. For each event send(m) at pi, VT(pi)[i] is incremented by 1.

3. Each message sent by process pi is timestamped with the incremented value of
VT(p).

4. When process p, delivers a message m from pi containing VT(m), pj modifies its
vector time in the following manner:

VkEl..n : VT(pj)[k] = max( VT(p,)[k], VT(m)[k])

Rules for comparing vector times are:
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1. VT 1 < VT 2 iffVi: VTI[i] < VT 2[i]

2. VTI < VT 2 if VT 1 < VT 2 and 3i: VTI[i] < VT 2 [i]

Notice that in contrast to the rule for LT(p), VT(p) is updated at the deliver event for
an incoming message. We will make use of this distinction below.

It can be shown that given messages m and m', send(m)-+send(m') iff VT(m) < VT(m')
[Mat89,Fid88]: vector timestamps represent causality precisely. This constitutes the fun-
damental property of vector times, and the primary reason for our interest in such times
as opposed to logical ones.

3.4 Causal message delivery

Recall that if processes communicate using CBCAST, all messages must be delivered in
an order consistent with causality. Suppose that a set of processes P communicate using
only broadcasts to the full set of processes in the system; that is, Vm : dests(m) = P. This
hypothesis is unrealistic, but Section 4 will adapt the resulting protocol to a settings with
multiple process groups.1 We now develop two delivery protocols by which each process p
receives messages sent to it, delays them if necessary, and then delivers them such that:

If send( m)- send( m') then deliver( m)--deliver( m').

3.4.1 LT protocol

Our first solution to the problem is based on logical clocks; and is referred to as the LT
protocol from here on. It is related to other solutions that have appeared in the literature
[Lam78,CASD86] and will be used as a building block later on. The basic technique will
be to delay a message until messages with at least as large a timestamp has been received
from every other process in the system. However, since this would only work if every
process sends an infinite stream of multicasts, a channel flushing mechanism is introduced
to avoid potentially unbounded delays.

Say that the channel from process pi to pi has been flushed at time LT(m) if pi will
never receive a message m' from pj with LT(m') < LT(m). Flushing can be achieved
by pinging. To ping a channel, pi sends pi a timestamped inquiry message inq, but
without first incrementing LT(p,). On receiving an inquiry p,, as usual, sets LT(pj) =
max(LT(pi), LT(inq)) and replies with an ack message containing LT(pj), without mod-
ifying LT(pj). On receiving the ack pi, as usual, sets LT(p,) = max(LT(pi), LT(ack)).
If no new messages are being multicast, pinging advances LT(p,) and LT(pi) to the same
value.

The protocol is as follows:

'This hypothesis is actually used only in the VT delivery protocol.
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1. Before sending message m, process Pi increments LT(pi) and then timestamps nt.

2. On receiving message m, process pi sets LT(pj) = .,4.. x(LT(pj), LT(m)). Then, pj
delays m until for all k $ i, the channel between pj and Pk has been flushed for time

LT(m). pj does not delay messages received from itself.

3. If m has the minimum timestamp among messages satisfying (2), m may be deliv-

ered.

To prove that causal delivery is achieved, consider two messages such that send(m 1 )- send(m 2 ),

and hence LT(ml) < LT(m 2 ). There are two cases:

1. The same process sends ml and M 2 . Because communication is FIFO, m, will be
received before M 2 , and because LT(ml) < LT(m 2 ), condition 3 guarantees that
m, will be delivered before M 2.

2. Different processes send ml and M 2 . According to condition 2, m 2 can only be
delivered when all channels have been flushed for LT(m 2 ). As communication is

FIFO, and LT(ml) < LT(M2 ), it follows that ml has been received. Condition 3
then guarantees that mi will be delivered before m 2.

The communication cost, however, is high: 2n - 3 messages may be needed to flush
channels for every message delivered, hence to multicast one message, 0(n 2 ) messages
could be transmitted. For infrequent multicasting, this cost may well be tolerable; the
overhead would be unacceptable if incurred frequently. However, in place of pinging,
processes can periodically multicast their logical timestamps to all other group members.
Receipt of such a multicast flushes the channels: at worst, a received message will be
delayed until the recipient has multicast its timestamp and all other processes have done

a subsequent timestamp multicast. The overhead of the protocol can now be tuned for a

given environment .2

3.4.2 VT protocol

A much cheaper solution can be derived using vector timestamps; we will refer to this
as the VT protocol. The idea is basically the same as in the LT protocol, but because
VT(m)[k] indicates precisely how many multicasts by process Pk precede m, a recipient

of m will know precisely how long m must be delayed prior to delivery; namely, until
2 Readers familiar with the A-T real-time protocols of [CASD86] will note the similarity between that

protocol and this version of ours. Clock synchronization (on which the A-T scheme is based) is normally
done using periodic multicasts [ST87]. This modification recalls suggestions made in [Lam78], and makes
logical clocks behave like weakly synchronized physical clocks. Clock synchronization algorithms with
good message complexity are known, hence substitution of a A-T based protocol for the logical clock-
based protocol in our "combined" algorithm, below, is an intriguing direction for future study.
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VT(m)[k] messages have been delivered from Pk. Since - is an acyclic order accurately

represented by the vector time, the resulting delivery order is causal and deadlock free.

The protocol is as follows:

1. Before sending m, process pi increments VT(pi)[i] and timestamps m.

2. On reception of message m sent by pi and timestamped with VT(m), process pj # p,

delays m until

VT(m)[i] = VT(pj)[i] + 1

Vk 5 i: VT(m)[k] _ VT(pj)[k]

Process pj need not delay messages received from itself.

3. When a message m is delivered, VT(pj)[i] is incremented (this is simply the vector

time update protocol from Section 3.3).

Step 2 is the key to the protocol. This guarantees that any message m' transmitted

causally before m (and hence with VT(m') < VT(m)) will be delivered at p. before m is
delivered. An example in which this rule is used to delay delivery of a message appears

in Figure 1.

PI

(1,0,0)

P2 P2 (-,1"," ) ( 1,,0)

P3

Time -

Figure 1: Using the VT rule to delay message delivery

The correctness of the protocol will be proved in two stages. We first show that causality is

never violated (safety) and then we demonstrate that the protocol never delays a message

indefinitely (liveness).

Safety. Consider the actions of a process pj that receives two messages m, and m 2 such

that send(mi)-- send(m 2 ).
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Case 1. rn and m 2 are both transmitted by the same process pi. Recall that we
assumed a lossless, sequenced communication system, hence p, receives m, before

M 2 . By construction, VT(ml) < VT(m 2 ), hence under step 2, m 2 can only be
delivered after mi has been delivered.

Case 2. m, and m 2 are transmitted by two distinct processes pi and pi'. We will show
by induction on the messages received by process pi that m 2 cannot be delivered

before ml. Assume that m, has not been delivered and that p. has received k

messages.

Observe first that send(m)--.send(m2 ), hence VT(ml) < VT(m 2 ) (basic property
of vector times). In particular, if we consider the field corresponding to process p,.
the sender of nl, we have

VT(mi)[i] VT(m 2 )[i (1)

Base case. The first message delivered by pj cannot be m2 . Recall that if no

messages have been del cered to p3 , then VT(p3 )[i] = 0. However, VT(mi)[i] >
0 (because m, is sent by pi), hence VT(m 2)[i] > 0. By application of step 2 of

the protocol, m 2 cannot be delivered by p3 .

Inductive step. Suppose p, has received k messages, none of which is a message
m such that send(ml)-*send(m). If m1 has not yet been delivered, then

VT(pj)[i] < VT(ml)[i] (2)

This follows because the only way to assign a value to VT(pj)[i] greater than
VT(mil)[i] is to deliver a message from pi that was sent subsequent to ml, and

such a message would be causally dependent on ml. From relations 1 and 2 it
follows that

VT(p,)[i] < VT(m 2 )[i]

By application of step 2 of the protocol, the k + 1'st message delivered by pj

cannot be M 2 . 0

Liveness. Suppose that there exists a broadcast message m sent by process pi that can
never be delivce d1 to process pj. Step 2 implies that either:

VT(m)[i] $ VT(pj)[i] + 1, or

3k $ i: VT(m)[k] > VT(pi)[k]

and that m was not transmitted by process pj. We consider these cases in turn.

1. VT(m)[i] $ VT(p,)[i] + 1, that is, m is not the next message to be delivered from pi

from pj. Since all messages are multicast to all processes and channels are lossless
and sequenced, it follows that there must be some message mi' sent by pi that pj

received previously, has not yet delivered, and with VT(m')[i] = VT(pj)[i] + 1. If
mi is also delayed, it must be under the other case.
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2. 3k 5 i : VT(m)[k] > VT(pj)[k]. Let n = VT(m)[k]. The n'th transmission of
process Pk, must be some message m'-.m that has either not been received at pj,
or was received and is delayed. Under the hypothesis that all messages are sent
to all processes, m' was already multicast to pj. Since the communication system
eventually delivers all messages, we may assume that m' has been received by pj.
The same reasoning that was applied to m can now be applied to m'. The number
of messages that must be delivered before m is finite and > is acyclic, hence this
leads to a contradiction. 0

4 Extensions to the basic protocol

Neither of the protocols in Section 3 is suitable for use in a virtually synchronous setting
with multiple process groups and dynamically changing group views. This section first
extends the simple VT CBCAST protocol of Section 3.4.2 into one suitable for use
with multiple but static process groups, but arrives at a protocol subject to a significant
constraint on what we call the communication structure of the system. Then, we show
how to combine the protocol with other mechanisms, notably the LT CBCAST protocol
of Section 3.4.1, to overcome this limitation. We arrive at a powerful, general solution.

4.1 Transmission limited to within a single process group

The first extension tc the VT protocol is concerned with processes that multicast only
within a single process group at a time. This problem is clearly trivial if process groups
don't overlap, a property that can be deduced at runtime (see Section 4.4.4). On the other
hand, we have assumed that overlap will not be uncommon. Such scenarios motivate the
series of changes to the algorithm presented in this section and the ones that follow.

The first change is ccncerned with processes that belong to multiple groups, e.g. a process
pi belongs to groups ga and gb, and multicasts oi.ly within groups. Multi~asts sent by pi
to g, must be distinguished from those to gb, since a process pj belonging to gb i nd not
to g,, that receives a message with VT(m)[j] = k will otherwise have no way to determine
how many of these k messages were sent to 9b and hence precede m causally. This leads us
to extend the single VT clock to multiple VT clocks; VT. is the logical clock associated
with group g0, and VT[i] thus counts multicasts by process pi to group ga.3 Processes
maintain VT clocks for each group in the system, and attach all the VT clocks to every
message that they multicast.

The next change is to step 2 of the VT protocol. Suppose that process pi receives a message
m sent in group g. with sender pi, and that pj also belongs to groups {gi. ... ,g,} =- Gj.
Step 2 can be replaced by the following rule:

'Clearly, if pi is not a memb~r of g., then VT[i) = 0, thus allowing a sparse representation of the
timestamp. For clarity, we will continue to represen, each timestamp VT as a vector of length n, with a
special entry * for each process that is not a member of g..

11



2' On reception of message m from pi i pj, sent in g., process pi delays m until

2.1' VTa(m)[i] = VTa(pj)[i] + 1, and

2.2' Vk: (PkEg, A k $ i) : VT.(m)[k] <_ VT(p3 )[k], and

2.3' Vg: (gEGj): VTg(m) VT,(pj).

As above, pj does not delay messages received from itself.

Figure 2 illustrates the application of this rule in an example with four processes into

groups identified as p, ...p4. Processes Pl, p2 and p3 belong to group G 1, and processes P2,

P3 and P4 to group G 2 . Notice that m 2 and m 3 are delayed at p3, because it is a member
of G, and must receive m, first. However, m 2 is not delayed at P4, because P4 is not a

member of G 1.And m 3 is not delayed at P2, because p2 has already received m, and it

was the sender of m 2.

PM0 , ,0 ) / : 0(,1, 0, ) , 1, 0, 1))
P2

Prn ((1,OO,*),),lOO1,0,1))

P3

.m3 : (( 1,,0,*), 1,0, 1))

P4 7* M30.10 ) * ,0 )

Figure 2: Messages sent within process groups. G 1 = {Pl,p2,P3} and G 2 = {P2,P3,P4}

The proof of Section 3 adapts without difficulty to this new situation; we omit the nearly
identical argument. One can understand the modified VT protocol in intuitive terms. By

ignoring the vector timestamps for certain groups in step 2.3', we are asserting that there
is no need to be concerned that any undelivered message from these groups could causally

precede m. But, the ignored entries correspond to groups to which pi does not belong,

and it was assumed that all communication is done within groups.

4.2 Use of partial vector timestamps

Until the present, we have associated with each message a vector time or vector times

having a total size determined by the number of processes and groups comprising the
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application. Although such a constraint arises in many published CBCAST protocols,
the resulting vector sizes would rapidly grow to dominate message sizes. A substantial
reduction in the number of vector timestamps that each process must maintain and trans-
mit is possible in the case of certain communication patterns, which are defined precisely
below. Even if communication does not always follow these patterns, our new solution
can form the basis of ether slightly more costly solutions which are also described below.

Define the communication structure of a system to be an undirected graph CG = (G, E)
where the nodes, G, correspond to process groups and edge (g1,g2) belongs to E iff there
exists a process p belonging to both gi and 92. If the graph so obtained has no biconnected
component 4 containing more than k nodes, we will say that the communication structure
of the system is k-bounded. In a k-bounded communication structure, the length of the
largest simple cycle is k. s A 0-bounded communication structure is a tree (we neglect
the uninteresting case of a forest). Clearly, such a communication structure is acyclic.

Notice that causal communication cycles can arise even if CG is acyclic. For example,
In figure 2, message ml, M 2 , m 3 and m 4 form a causal cycle spanning both g, and g.
However, the acyclic structure restricts such communication cycles in a useful way - such
cyles will either be simple cycles of length 2, or complex cycles.

Below, we demonstrate that it is unnecessary to transport all vector timestamps on each
message in the k-bounded case. If a given group is in a biconnected component of size k,
processes in this group need only to maintain and transmit timestamps for other groups
in this biconnected component. We can also show that they need to maintain at least
these timestamps. As a consequence, if the communication structure is acyclic, processes
need only maintain the timestamps for the groups to which they belong.
We proceed to the proof of our main result in stages. First we address the special case of
an acyclic communication structure.

Lemma 1: If a system has an acyclic communication structure, each process in the sys-
tem only maintains and multicast the VT timestamps of groups to which it belongs.

Notice that under this lemma, the overhead on a message is limited by the size and number
of gioups to which a process belongs.

We wish to show that if message m, is sent (causally) before message mik, then m, will
be delivered before Mk at all overlapping sites. Consider the chain of messages below.

m1 m2 m3 ik-i mk
pl ---- > p2 ---- > p3 ---- > ---- ---- > pk ---- > pk+1

gI g2 g3 gk-l gk

This schema signifies that process P1 multicasts message m, to group gi, that process
p2 first receives message m, as a member of group gi and then multicasts M2 to g2,

4 Two vertices are in the same biconnected component of a graph if there is a path between them after
any other vertex has been removed.

'The nodes of a simple cycle (other than the starting node) are distinct; a complex cycle may contain

arbitrary repeated nodes.
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and so forth. In general, gi may be the same as gj for i $ j and pi and pj may be

,h, same even for i $ j (in other words, the processes pi and the groups gi are not
necessarily all different). Let the term message chain denote such a sequence of messages,

Pj
and let the notation mi--mj mean that p transmits mj using a timestamp VT(mi) that
directly reflects the transmission of mi. For example, say that mi was the k'th message
transmitted by process pi in group ga. We will write mi,-m j iff VTa(pj)[i] > k and
consequently VTa(rnj)[i] >_ k. Our proof will show that if mi---mj and thc destinations

of mi and mj overlap, then mi ---mj, where pi is the sender of mj.

We now note some simple facts about this message chain that we will use in the proof.
Recall that a multicast to a group g, can only be performed by a process pi belonging to
g.. Also, since the communication structure is acyclic, processes can be members of at
most two groups. Since mk and mI have overlapping destinations, and P2, the destination
of mI, is a member of g, and of g2, then gk, the destination of the final broadcast, is
either g1 or g2. Since CG is acyclic, the message chain Ml... Mk simply traverses part of
a tree reversing itself at one or more distinguished groups. We will denote such a group

gr. Although causality information is lost as a message chain traverses the tree, we will
show that when the chain reverses itself at some group gr, the relevant information will

be "recovered" on the way back.

Proof of Lemma 1: The proof is by induction on 1, the length of the message chain
Mi ...ink. Recall that we must show that if mI and mk have overlapping destinations, they

will be delivered in causal order at all such destinations, i.e mI will be delivered before
Mk.

Base case. 1 = 2. Here, causal delivery is trivially achieved, since Pk- P2 must be a
member of g, and Mk will be transmitted with g's timestamp. It will therefore be
delivered correctly at any overlapping destinations.

Inductive step. Suppose that our algorithm delivers all pairs of causally related mes-
sages correctly if there is a message chain between them of length I < k. We show
that causality is not violated for message chains where 1 = k.

Consider a point in the causal chain where it reverses itself. We represent this by
mr.l-mr-.*mr,-- mr+l, where Mr-1 and mr+1 are sent in gr-1 gr +i by Pr and

Pr+1 respectively, and mr and mr, are sent in g, by Pr and Pr'. Note that p, and

Pr+i axe members of both groups. This is illustrated in Figure 3. Now, M,' will not
be delivered at Pr+i until m, has been delivered there, since they are both broadcast

in Gr. We now have mr, + mr P mr+l We have now established a message
chain between mI and mk where I < k. So, by the induction hypothesis, nI will
be delivered before Mk at any overlapping destinations, which is what we set out to

prove. 0

We now proceed to prove the main theorem.
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Figure 3: Causal Reversal

Theorem 1: Each process pi in a system needs only to maintain and multicast the VT
timestamps of groups in the biconnected components of CG to which pi belongs.

Proof: As with Lemma 1, our proof will focus on the message chain that established
a causal link between the sending of two messages with overlapping destinations. This
sequence may contain simple cycles of length up to k, where k is the size of the largest
biconnected component of CG. Consider the simple cycle illustrated below, contained in
some arbitrary message chain.

ml mc mc+l
pi ---- > ... p2 ---- > p3 ---- >

gi gc gl

Now, since Pl, p2 and p3 are all in groups in a simple cycle of CG, all the groups are in the
same biconnected component of CG, and all processes on the message chain will maintain
and transmit the timestamps of all the groups. In particular, when mc arrives at p3, it
will carry a copy of VTg1 that indicates that m, was sent. This means that mc will not
be delivered at p3 until m, has been delivered there. So mc+l will not be transmitted
by p3 until m, has been delivered there. Thus miP3m+. We may repeat this process
for each simple cycle of length greater than 2 in the causal chain, reducing it to a chain
within one group. We now apply Lemma 1, completing the proof. 0

Theorem 1 shows us what timestamps are sufficient in order to assure correct delivery of
messages. Are all these timestamps in fact necessary? It turns out that the answer is yes.
It is easy to show that if a process that is a member of a group within a biconnected com-
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ponent of CG does not maintain a VT timestamp for some other group in CG, causality
may be violated. We therefore state without formal proof:

Theorem 2: If a system uses the VT protocol to maintain causality, it is both necessary
and sufficient for a process pi to maintain and transmit those VT timestamps correspond-
ing to groups in the biconnected component of CG to which pi belongs.

4.3 Extensions to arbitrary communication structures

In general, managing information concerning the biconnected components of CG may be
difficult, especially in a dynamic environment. We believe that the most practical use of
the above result is in the acycic case, since a process can conservatively determine that it
is not in any cycle by observing that the group of which it is a member overlaps with at
most one other group - a completely local test (but see also Section 4.4.4). Consequently,
although all our results generalize, the remainder of the paper focuses on the acycic
solution, and we initially implemented only the acyclic solution in Isis. In this section,
we give two protocols that work in more general communication structures. The first
protocol does not use any knowledge about the communication structure, but it sometimes
imposes delays on message multicasting. The second protocol does use knowledge about
the communication structure, but does not impose delays on message multicasting. We
then extend both protocols to arbitrary dynamic communication structures.

4.3.1 Conservative solution

Our first solution is denoted the conservative protocol. Each multicast m is followed by a
second multicast terminate (m) signifying that m has reached all of its destinations. The
sender of a multicast will normally know when to send the terminate as a side-effect of
the protocol used to overcome packet loss. The terminate message may sent as a separate
multicast, but it can also be piggybacked on the next CBCAST sent to the same group.
A terminate message is not itself terminated.

We will say that a group is active for process p, if:

1. p is the initiator of a multicast to g that has not terminated, or

2. p has received an unterminated multicast to g, or

3. p has delayed the local delivery of a multicast to g (sent by some other process p').

Note that this is a local property; i.e. process p may compute whether or not it is active
for some group g by examining its local state. The conservative multicast rule states that
a process p may multicast to group g iff g is the only active group for process p or p
has no active groups. Multicasts are sent using the VT protocol, as usual. Notice that
this rule imposes a delay only when two causally successive messages are sent to different
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groups. The conservative solution could be inefficient, but yields a correct VT protocol.
However, the overhead it imposes could be substantial if processes multicast to several
different groups in quick succession, and it is subject to potential starvation (this can,
however, be overcome).

The conservative solution will work correctly even if group membership changes dynami-
cally.

For brevity, we omit the correctness proof of this solution. The key point is that if
p multicasts m to 92 after g, has ceased to be active, then there are no undelivered
multicasts m' in g, s.t. m'--+m. This can be demonstrated by showing that if g, is no
longer active and m'-.-m, then m' has terminated.

4.3.2 Excluded Groups

Assume that CG contains cycles, but that some mechanism has been used to select a
subset of edges X such that CG' = (G, E - X) is known to be acyclic. We extend our
solution to use the acyclic VT protocol for most communication within groups. If there
is some g' such that (g,g')EX we will say that group g is an ezcluded group and some
multicasts to or from g will be done using one of the protocols described below.

Keeping track of excluded groups could be difficult; however it is easy to make pessimistic
estimates (and we will derive an protocol that works correctly with such pessimistic es-
timates). For example, in Isis, a process p might assume that it is in an excluded group
if there is more than one other neighboring group. This is a safe assumption; any group
in a cycle in CG will certainly have two neighboring groups. This subsection and the two
that follow develop solutions for arbitrary communication structures, assuming that some
method such as the previous is used to safely identify excluded groups.

4.3.3 Combining the VT and LT protocols

Recall the LT multicast protocol presented in Section 3. The protocol was inefficient,
but required that only a single timestamp be sent on each message. Here, we run the
LT and VT protocols simultaneously, piggybacking on each message both LT and VT
timestamps, and apply a unified version of the LT and VT delivery schemes on receipt.
The LT timestamp is not incremented on every broadcast; it is only incremented on certain
broadcasts as described below. This greatly reduces the number of extra messages that
would be induced by the basic LT algorithm.

Say that m is to be multicast by p to group g. We say that p is not safe in g if:

* The last message p received was from some other group g'.

* Either g or g' is an excluded group.
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Our protocol rule is simple; on sending, if process p is not safe in group g, p will incre-
ment both its' LT timesamp and its' VT timestamp before multicasting a message to g.
Otherwise, it will just increment its' VT timestamp. A message is delivered when it is
deliverable according to both the LT delivery rule and the VT delivery rule.

Notice that the pinging overhead of the LT protocol is incurred only when logical clock
values actually change, which is to say only on communication within two different groups
in immediate succession, where one of the groups is excluded. That is, if process p executes
for a period of time using the VT protocol and receives only messages that leave LT(p)
unchanged, p will ping each neighbor processes at most once. Clocks will rapidly stabilize
at the maximum existing LT value and pinging will then cease.

Theorem 3: The combined VT-LT protocol will always deliver messages correctly in ar-
bitrary communication structures.

Proof: Consider an arbitrary message chain where the first and last messages have over-
lapping destinations. Without loss of generality, we will assume that g ...gk are distinct.
We wish to show that the last message will be delivered after the first at all such destina-
tions.

ml m2 m3 mk-1 mk
pI ---- > p2 ---- > p3 ---- > .... ....- > pk ---- > pk+l

gI g2 g3 gk-i gk

If none of gl...gi is an excluded group, then, by Lemma 1, m, will be delivered before
mk at all overlapping destinations. Now, if some group gi is excluded, two cases arise -
either the last group, gA: is excluded, or some other group is excluded. If 9k is excluded,
then pk; will increment its LT timestamp at some point between delivering mk-I and
sending ink. If some other group gi is excluded, i < k, then pk+i will increment its LT
timestamp between delivering mk and sending mk+1. So the LT timestamp of mk will
always be greater than the LT timestamp of mni, and mk will be delivered after m, at all
overlapping destinations. C3

4.4 Dynamic membership changes

We now consider the issue of dynamic group membership changes when using the com-
bined protocol. This raises several issues that are addressed in turn: virtually synchronous
addressing when joins occur, initializing VT timestamps, atomicity when failures occur,
and the problem of detecting properties of CG at runtime, such as when a process deter-
mines that its' group adjoins at most on one other and hence always uses the acyclic VT
protucol.
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4.4.1 Joins

To achieve virtually synchronous addressing when group membership changes while multi-
casts are active, we introduce the notion of flushing the communication in a process group.
Consider a process group g in group view viewi(g). Say that a new view viewi+1(g) now
becomes defined. There axe two cases: viewi+a(g) could reflect the addition of a new
process, or it could reflect the departure (or failure) of a member. Assume initially that
view changes are always due to adding new processes (we handle failures in Section 4.4.3).
We will flush communication by having all the processes in viewi+i(g) send a message

"flush i+1 of g", to all other members. During the period after sending such messages
and before receiving such a flush message from all members of Viewi+,(g) a process will
accept and deliver messages but will not initiate new multicasts.

Because communication is FIFO, if process p has received a flush message from all mem-
bers of g under view i + 1, it will first have received any messages sent in view i. It
follows that all communication sent prior to and during the flush event was done using
VT timestamps corresponding to viewi(g), and that all communication subsequent to
installing the new view is sent using VT timestamps for viewi+l (g). This establishes that
multicasts will be virtually synchronous in the sense of Section 2.

4.4.2 Initializing VT fields

Say that process pj is joining group g.. Then pj will need to obtain the current VT
values for other group members. Because pj participates in the flush protocol, this can
be achieved by having each process include its VT value in the flush message. pj will
initialize VTa[i] with the value it receives in the flush message from pi; pj initializes

VT.[j] to 0.

4.4.3 Failure atomicity

What about the case where some member of g fails during an execution? viewi+l(g) will

now reflect the departure of some process. Assume that process pj has received a message
m that was multicast by process pi. If pi now fails before completing its multicast, there
may be some third process Pk that has not yet received a copy of m. To solve this problem,
p, must retain a copy of all delivered messages, transmitting a copy of messages initiated
by Pi to other members of view(g) if pi fails. Processes identify and reject duplicates.

Multicasting now becomes the same two-phase protocol needed to implement the conser-
vative rule. The terminate message indicates which messages may be discarded; it can

be sent as a separate message or piggybacked on some other multicast.

On receiving viewk(g) indicating that pi failed, pj runs this protocol:

1. Close the channel to pi.
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2. For any unterminated multicast m initiated by pi, send a copy of m to all processes
in viewk(g) (duplicates are discarded on reception).

3. Send a flush message to all processes in viewk(g).

4. Simulate receipt of flush and ack messages from pi as needed by the channel and
view flush protocols, and treat any message being sent to pi as having been delivered
in the conservative protocol (Section 4.3.1).

5. After receiving flush messages from all processes in viewk(g), discard any messages
delayed pending on a message from pi.

6. pj ceases to maintain VTg[i].

Step 2 ensures atomicity and step 4 prevents deadlock in the VT, LT and the conservative
protocol. Step 5 relates to chains of messages m1 --*m 2 where a copy of m 2 has been
received but ml was lost in a failure; this can only happen if every process that received
m, has failed (otherwise a copy of m, would have been received prior to receipt of the
flush message). In such a situation, m 2 will never have been deliverable and hence can
be discarded.

This touches on an important issue. Consider a chain of communication that arises
external to a process group but dependent on a multicast within that group. Earlier, we
showed that causal delivery is assured by the acyclic VT protocol, but this assumed that
multicasts would not be lost. Instead, say that processes Pi and P2 belong to group g, and
that process P2 also belongs to g2. pi multicasts mi to 91; P2 receives m, and multicasts
m 2 to 92. Now, if P, and P2 both fail, it may be that m, is lost but that m2 is received
by the members of g l g2 that are still operational.

Several cases now arise, all troubling. Consider a process q that receives m 2. If q receives
m2 prior to running the failure protocol, it will discard it under step 5. If q receives
m 2 after running the failure protocol, however, it will have discarded the VT field corre-

sponding to Pl. M2 will not be delayed pending receipt of m, and hence will ultimately
be delivered, violating causality. (q cannot discard m2 because it may have been deliv-
ered elsewhere.) We thus see that both causality and atomicity could be violated by an
unfortunate sequence of failures coincident with a particular pattern of communication,
and that the system will be unable to detect that this has occurred.

One way to avoid this problem is to require that processes always use the conservative
rule of Section 4.3.1, even if the communication structure is known to be acyclic. In our
example, this would prevent p2 from communicating in 92 until m, reached its destinations.
Recall that step 4 of the protocol given above prevents the conservative rule from blocking
when failures occur.

An alternative is to accept some risk and operate the system unsafely. For example,
a process might be permitted to initiate a multicast to group g only if all of its own
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multicasts to other groups have been delivered to at least one other destination process;
this yields a protocol tolerant of any single failure. 6

Given a 1-resilient protocol, the sequence of events that could cause causal delivery to be
violated seems quite unlikely. A k-resilient protocol can be built by also delaying receivers;
for large k, this reverts to the conservative approach.

We believe that even for a 1-resilient protocol, the scenario in question (two failures that
occur in sequence simultaneously with a particular pattern of communication) is extremely
improbable. The odds of such a sequence occurring is probably outweighed by the risk of
a software bug or hardware problem that would cause causality to be violated for some
mundane reason, like corruption of a timestamp or data structure.

Our initial implementation of bypass CBCAST uses the conservative solution between all
groups; i.e. all groups are excluded. The VT protocol is used for communication within a
group. This version of Isis is thus immune to the causality and atomicity problems cited
above, but incurs a high overhead if processes multicast to a series of groups in quick
succession, which is not uncommon. Our plan is to modify the implementation to use
the more optimistic protocols in a 1-resilient manner, but to provide application designers
with a way to force the system into a completely safe mode of operation if desired. It
should be noted that limitations such as this are common in distributed systems; a review
of such problems is included in [BJ89]. We are not alone in advocating a "safe enough"
solution in order to increase performance.

4.4.4 Dynamic communication graphs

A minor problem arises in applications having the following special structure:

1. The combined VT-LT protocol is in use.

2. Processes may leave groups other than because of failures (in Isis, this is uncommon
but possible).

3. Such a process may later join other groups.

Earlier, it was suggested that a process might observe that the (single) group to which
it belongs is adjacent to just one other group, and conclude that it cannot be part of a
cycle. In this class of applications, this rule may fail.

To see this, suppose that a process p belongs to group gl, then leaves g, and joins g2. If
there was no period during which p belonged to both g, and 92, p would use the acyclic
VT protocol for all communication in both g, and 92. Yet, it is clear that p represents a
path by which messages sent in g2 could be causally dependent upon messages p received

6When using a transport facility that exploits physical multicast such a message will most often have
reached all of its destinations.
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in gl, leading to a cyclic message chain that traverses g1 and g2. This creates a race
condition under which violations of the causal delivery ordering could result.

This problem can be overcome in the following manner. Associate with each group a

counter of the number of other groups to which it has ever been adjacent; this requires
only a trivial extension of the flush protocol. Moreover, say that even after a process p

leaves a group gi, it reports itself as a one-time member of g. If p joins some group g2,

the adjacency count for g2 will now reflect its prior membership, and if a causal chain
could possibly arise, multicasts will be under the exclusion rule. Clearly, this solution

is conservative and could be costly. On the other hand, say that it is known that all

multicasts terminate within some time delay a. Then one could decrement the adjacency
counter for a group after a delay of a time units without risk. In Isis, a reasonable value

of a would be on the order of 2-3 seconds.

We have developed more sophisticated solutions to this problem, but omit these because

the issue only arises in a small class of applications, and the methods and their proofs are
complex.

4.4.5 Recap of the extended protocol

In presenting our algorithm as a basic scheme to which a series of extensions and modi-

fications were made, we may have obscured the overall picture. We conclude the section
with a brief summary of the protocol as we intend to use it in Isis.

The protocol we ultimately plan to use in Isis is the acyclic VT solution combined with the

LT protocol. This protocol piggybacks an LT timestamp and a list of VT timestamps on

each message, one VT vector for each group to which the sender of the message belongs.
In addition to the code for delaying messages upon reception, the protocol implements

the channel- and view-flush and terminate algorithms.

Under most conditions the Isis system will be operated conservatively, excluding groups

adjacent to more than one neighboring group. As noted above, neighboring groups can
be counted by piggybacking information on the view-flush protocol. Looking to the

future, we expect to develop Isis subsystems that will have special a-priori knowledge

of the communication structure. These subsystems will make use of an Isis system call
pg-exclude (gname, TRUE/FALSE) to indicate the exclusion status of groups. We curently

have no plans to develop sophisticated communication topology algorithms for Isis.

The initial Isis implementation consists of the VT scheme and the conservative rule,
together with the view-flush and terminate protocols. We expect to add the LT extension

shortly; the necessary code is small compared to what is already running.
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5 Other communication requirements

In this section we consider some minor extensions of the protocol for other common
communication requirements.

5.1 A Bypass ABCAST protocol

Readers may wonder if the bypass CBCAST protocol can be extended into a fast AB-
CAST mechanism. ABCAST is a totally ordered communication protocol: all destina-
tions receive an ABCAST message in a single, globally fixed order.

The answer to this question depends on the semantics one associates with ABCAST
addressing. One way to define ABCAST is to say that two ABCAST's to the same
logical address will be totally ordered, but to make no guarantees about ordering for
ABCAST messages sent to different addresses. A more powerful alternative is to say
that regardless of the destination processes, if two ABCAST's overlap at some set of
destinations, they are delivered in the same order. Although Isis currently supports the
latter approach, it is far easier to implement a bypass ABCAST with the weaker delivery
semantics; the resulting protocol resembles the one in [CM84]. This is in contrast with
bypass CBCAST, which always achieves causal ordering.

Associated with each view viewi(g) of a process group g will be a token holder process,
token(g)Eviewi(g). If the holder fails, the token is automatically reassigned to a live
group member using any well-known, deterministic rule. Assume that each message m is
uniquely identified by uid(m).

To ABCAST m, a process holding the token uses CBCAST to transmit m. If the
sender is not holding the token, the ABCAST is done in stages:

1. The sender CBCAST's a needs-order message containing m. 7 Processes receiv-
ing this message delay delivery of m.

2. If a process holding the token receives a needs-order message, it CBCAST's a
sets-order message giving a list of one or more messages, identified by uid, and
the order in which to deliver them, which it may chose arbitrarily. If desired, a new
token holder may also be specified in this message.

3. On receipt of a sets-order, a process notes the new token holder and delivers
delayed messages in the specified order.

4. On detection of the failure of the token holder, after completing the flush protocol,
all processes sort pending ABCAST's and deliver them in any consistent order.

7It might appear cheaper to forward such a message directly to the token holder. However, for a
moderately large messages such a solution will double the 10 done by the token holder, creating a likely
bottleneck, while reducing the 10 load on other destinations only to a minor degree.
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This protocol is essentially identical to the replicated data protocol proved correct in
[BJ89,Sch88]. Step 4 is correct because the flush ensures that any set-order messages
will have been delivered atomically, hence all processes will have the same enqueued

messages which they deliver immediately before installing the new view.

The cost of doing a bypass ABCAST depends on the locations where multicasts originate
and frequency with which the token is moved. If multicasts tend to originate at the same
process repeatedly, then once the token is moved to that site, the cost is one CBCAST
per ABCAST. If they originate randomly and the token is not moved, the cost is 1 + 1/k
CBCAST's per ABCAST, where we assume that one set-order message is sent for

ordering purposes once for every k ABCAST's. This represents a major improvement
over the existing Isis ABCAST protocol. However, because bypass ABCAST achieves
a weaker form of ordering, it might require changes to existing Isis applications. We have
not yet decided whether to make it the default.

5.2 Point-to-point messages

Early in the the paper, we asserted that asynchronous CBCAST is the dominant protocol
used in Isis. Point-to-point messages, arising from replies to multicast requests and and
RPC interactions, are also common. In both cases, causal delivery is desired. Here, we

consider the case of point-to-point messages sent by a process p within a group G to which
p belongs.

A straightforward way to incorporate point-to-point messages into our VT protocol is to
require that they be acknowledged and to inhibit the sending of new multicasts during
the period between when such a message is transmitted and when the acknowledgement is
received (in the case of an RPC, the reply is the acknowledgement). The recipient is not
inhibited, and need not keep a copy of the message. A point-to-point message is times-
tamped using the sender's logical and vector times, and delivered using the corresponding
delivery algorithms, but neither timestamp is incremented prior to transmission. In effect,

point-to-point messages are treated as events internal to the processes in olved.

The argument in favor of this method is that a single point-to-point RPC is fast and
the cost is unaffected by the size of the system. Although one can devise more complex

methods that eliminate the period of inhibited multicasting, problems of fault-tolerance
render them less desirable.

5.3 Subset multicasts

Some Isis applications form large process groups but require the ability to multicast to

subsets of the total membership. Our protocol is easily extended into one supporting

subset multicast, and our initial Isis implementation supports this as an option. When

enabled, a VT vector timestamp of length sn is needed for a group with s senders and n
members.
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For example, a stock brokerage might support a quote dissemination service with two or
three transmitters and hundreds of potential recipients. Rather than form a subgroup
for each stock (costly approach if there are many stocks), each multicast could be sent
to exactly those group members interested in a given quote. We omit the details of the
subset multicast extension.

6 Performance and transport protocol selection

In this section, we discuss the performance of our protocol. We show that the performance
of the bypass protocol will be largely dominated by the performance of the underlying

layer that is simply concerned with moving data from one site to others. We discuss the
design of some alternatives for this layer, which we are currently implementing.

6.1 Complexity and overhead of the protocol

Implementation of the bypass protocol was straightforward in Isis, requiring less than 1300
lines of code out of the total of 52,000 in the protocol layer of the system. Extensions
to support the LT protocol will add little additional code. Initial measurements of

performance demonstrate a five to tenfold speedup over the prior Isis protocols.

Our protocol has an overhead of both space and messages transmitted. The size of a

message will be increased by the vector time fields it carries; as noted above, the numbe"
of such vectors is determined by the total cardinality of the groups to which the sender
belongs directly, and hence will be small. The number of overhead messages sent will
depend on the number of non-piggybacked terminate messages sent by the conservative
protocol and, when implemented, the frequency of LT pinging. in Isis, LT pinging is
expected to be rare and terminate messages are always piggybacked on a subsequent
CBCAST unless communication in a group quiesces. (As noted before, LT overhead can
be bounded using a periodic protocol, if necessary).

We believe that iatency, especially when the sender of a multicast must delay before

continuing computation, is the most critical and yet unappreciated form of overhead.

Delays of this form are extremely noticable. In many systems, there is only one active
computation at a given instant in time, or a single computation that holds a lock or other
critical resource. Delaying the sender of a multicast may thus have the effect of shutting
down the the entire system. In contrast, the delay between wL-en a message is sent and
when it reaches a remote destination is less relevant to performance. The sender may

be delayed in two ways: if the transmission protocol itself is computationally costly, or

if a self-addressed multicast cannot be delivered promptly because it is unsafe to do so.
Defined in this sense, our method imposes latency on the sender of a multicast only in the
conservative protocol, and only when a process switches from multicasting in one group
to another, or needs to communicate in one group after receiving in another. Otherwise,
the protocol is totally asynchronous. Latency on the transport side is less critical. The
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dominant source of transport latency is LT pinging, and we plan to quantify this effect
by instrumenting Isis and using simulations.

6.2 Implementation

An interesting feature of the bypass facility is that it assumes very little about communi-
cation between processes, and communicates in an extremely regular manner. Specifically,
the protocol we ended with sends or multicasts only within groups to which a sending
process belongs, and requires only that inter-process communication be sequenced and
lossless. The idea of providing an interface by which the bypass multicast protocols could
run over a lower-layer protocol provided by the application appealed to us, and as part of
the Isis implementation of bypass CBCAST and ABCAST, we included an interface
permitting this type of extension. We call this lower layer the multicast transport protocol.
A multicast transport protocol simply delivers messages reliably, in FIFO order, to the
groups or processes addressed.

When no special hardware for multicasting is available, the basic Isis multicast transport

protocol is based on UDP (unreliable datagrams). When multicasting hardware is avail-
able, Isis can switch to an experimental multicast transport protocol that takes advantage
of such hardware. The remainder of this section details the design, performance and over-
head of these multicast transport protocols (in time, size, and messages exchanged per
multicast).

6.3 Overhead imposed by the basic VT Protocol

This section breaks down the costs we see in terms of various components of the overhead
(create a light weight task, do the I/O, select system call, create the packets, reconstruct
them on reception). Figure 4 breaks down the basic CPU costs of sending and receiving
messages in our implementation. These figures are preliminary and will be revised. These
figures are for the combined protocol, but they do not reflect higher level delays that
might be imposed by infrequent events such as LT pinging or the view flush. Our figures
were derived on a pair of SUN 3/60's doing continuous null RPC's from one to the other.

The RPC request was sent iu a CBCAST; the result returned in a CBCAST reply
packet. A new lightweight task was created at the receiver to field each RPC request.
An Isis message is fairly complex and allows scatter/gather and arbritrary user-defined
and system-checked types. Since no attempt has been made to optimize message data
structures for the simple case of a null RPC, this accounts for a a large part of the time
spent in the messaging/task layer of the system.

The main conclusion from these measurements is that the CBCAST algorithms we derive
in this paper are quite inexpensive. Most of the time that a message spends in transit is

spent in the lower layers of the system. Clearly, the cost of UNIX messaging is beyond
our control, but a great deal can be said about mlticast transport.
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Sender Receiver

Bypass Cbcast .2ms O.3ms

Transport/

Tasks 0.9ms 1.4ms

Isis

System Calls 1.7ms 1.Oms UNIX

Wire _

Total Time: 5.5ms

Figure 4: Basic protocol overhead

6.4 Multicast transport protocol selection

The basic Isis multicast transport protocol is designed around a point-to-point model.
Each process in a group maintains a two-way reliable data stream with each other process
in the group. Whenever possible, acknowledgement information is piggybacked on other
packets, such as replies to an RPC or multicast. These streams are maintained indepen-
dently of each other; for brevity, we omit discussion of such details as flow control and
failure detection. This scheme has several advantages; it is relatively easy to understand,
as it is based on a well-known communication model. Since it is built on top of unreliable
datagrams, it can be easily implemented on any network that provides this service. It has,
however, several disadvantages - in particular, it does not scale well. The processing and
network transmission costs of communicating with a group rise linearly with the number
of processors in the group. In addition, as the number of processes in a group increases, a
process sending to the group may experience congestion at the network interface as many
acknowledgement or reply packets arrive more or less simultaneously from the other other
processes in the group.

We have therefore investigated the design of other multicast transport protocols. An ideal
multicast transport protocol would have the following features:

9 It would be independent of network topology, but able to take advantage of features
of particular networks - e.g. a broadcast subnet.

* The cost of sending a message would be ;ndependent of the number of recipients of
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that message.

* It would work efficiently for both small and large messages.

e It would have low overhead, latency and high throughput.

It is also important to note that frequently a multicast may give rise to many replies
directed to the original sender. We call such an occurrence a convergecast. This can
lead to congestion at the original multicast sender, with many of the replies being lost.
To avoid this, a multicast transport protocol should have some sort of mechanism for
co-ordinating and reliably delivering multicast replies. Similar considerations may apply
to acknowledgements; however acknowledgements need not be as timely as replies - the
multicast transport protocol has more freedom to delay them.

Generally speaking, a reliable multicast transport mechanism will be used in two distinct
modes. In the first, stream mode, one process will multicast a large amount of data to the
group before another process wishes to reply. Multicasting is continuous. This usage could
arise in, for example, a trading system, where the transport mechanism is being used to
disseminate quotes to trading stations. Another example is a replicated file system where
a client workstation is writing a file to a group of file servers. In rpc mode, many processes
multicast replicated rpc's to the group, where each rpc contains relatively little data, and
is much more likely to actually require a reply. Multicasts are not continuous, but bursty.
This could arise in maintaining and querying a distributed database or maintaining the
state of a distributed game. Note that the application using the multicast transport
protocol can provide hints as to which mode it thinks it is operating in. Intermediate
modes of usage can of course arise; we do not expect them to be common.

Reliable multicast transport protocols may be divided into two classes; those based on
positive acknowledgements, and those based on negative acknowledgements. Many pre-
vious proposals for reliable multicast transport protocols have been based on negative
acknowledgements, including [KTHB89,AHL89,CM84]. (Some of these protocols, in ad-
dition to providing reliable transport, also provide transport ordering properties.) This is
because the designers of these protocols believed that a positive acknowledgement from
each receiving site would be expensive. We do not believe that this is so.

If a process group is largely communicating in rpc mode, reply messages will be converging
at the sender in any case. These reply messages can carry positive acknowledgements. In
addition, if there are many of these reply messages, they should be scheduled by some
mechanism to avoid congestion and message loss at the multicast sender. On the other
hand, if a group is largely communicating in stream mode, the issue of flow control becomes
very important. The sender can't send data faster than the slowest process in the group
can receive it; in order to avoid packet loss, there will be flow control packets coming
back to the sender from each other process in the group. Again, these packets may carry
positive acknowledgments, and again, they must be scheduled in order to avoid congestion
problems. The protocol has more flexibility in scheduling these packets than in scheduling
reply packets, since they do not contain data that needs to be delivered to the higher level.
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There are several possible mechanisms for scheduling packets that are converging on the
same destination. One scheme is for the original sender to schedule the packets; it will
decide how many concurrent acknowledgments or replies it (and the network) can handle.
It then schedules each group of acknowledgements. This scheme involves some extra work
by the sender; it has the advantage that the sender can control the rate at which the
packets come back depending on whether or not his client is waiting for replies.

Other methods involve the receivers co-operating to ensure that they don't send too many
packets to the sender at once. One such method basically involves passing one or several
tokens around the group, with the holder of a token having the right to send reply or
acknowledgement packets to the original sender. If the replies or acknowledgements are
small, they can be put on the token itself, which is returned to the sender when it is full.
The main problem with this scheme is that the ackno'iedgement or reply may take a long
time to return to the original sender of a message. This can be overcome by using large
window sizes, or by using a large en ,agh number of tokens. Another problem is that the
overhead of receiving a message is higher, because an acknowledgement token must be
received and transmitted also. This can be overcome by having one token acknowledge
several messages, and by piggybacking the acknowledgement token wherever possible. A
third problem is that the loss of one acknowledgement packet may cause a message to be
retransmitted to multiple destinations. We believe that the extra overhead is acceptable,
since packet loss should be rare.

Another receiver-scheduled method for handling acknowledgements or replies is simply
to have each acknowledgement be returned at some random time by the recipients. This
scheme has been extensively analyzed by [Dan89]; the main problem is that in order to
avoid congestion at the original sender, the interval from which the random delays must be
picked is Yery long. It is also of course possible to combine several of the above schemes;
for example, acknowledgements could be sender-scheduled in small groups; individual
acknowledgements within each group could be further randomly delayed.

We are implementing multicast transport protocols with several of the convergecast-
avoidance scheduling strategies described above, and will experiment with them as al-
ternatives to the basic ISIS multicast transport protocol. Our implementations are based
on the multicast UDP software of [Dee88], which provides a logical unreliable multicast
across internets independently of whether the underlying networks support physical mul-
ticast. Full details of the design and implementation of these protocols will be found
in [Ste90]. We will include performance measurements for the bypass CBCAST and
ABCAST protocols running over these transport protocols in the final version of the
paper.
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7 Related Work

There has been a great deal of work on multicast primitives. CBCAST-like primitives
are described in [BJ87,PBS89,VRB89,SES89,LL86] As noted earlier, our work is most
closely related to that of Ladkin and Peterson. Both of these efforts stopped at essentially
the point we reached in Section 3 arriving a protocols that would perform well within a
single small group, but subject to severe drawbacks in systems with large numbers of pro-
cesses and of overlapping, dynamically changing process groups. Pragmatic considerations
stemming from our desire to use the protocol in ISIS motivated us to take our protocol
considerably further. We believe the resulting work to be interesting from a theoretical
perspective. Viewed from a practical perspective, a causal multicast protocol that scales
well and imposes little overhead under typical conditions certainly represents a valuable
advance.

ABCAST-like primitives are reported in [CM84,BJ87,GMS89,PGM85]. Our ABCAST
protocol is motivated by the Chang-Maxemchuck solution [CM84], but is simpler and
faster because it can be expressed in terms of a virtually synchronous bypass CBCAST.
In particular, our protocol avoids the potentially lengthy delays required by the Chang-
Maxemchuck approach prior to committing a message delivery ordering. We believe this
argues strongly for a separation of concerns in particular, a decoupling process group
management from the communication primitive itself.
We note that of the many protocols described in the literature, very few have been imple-
mented, and many have potentially unbounded overhead or postulate knowledge about
the system communication structure that might be complex to deduce. This makes direct
performance comparisons difficult, since many published protocols give performance esti-
mates based on simulations or measure dedicated implementations on bare hardware. We
are confident that the Isis bypass communication suite gives performance fully competi-
tive with any alternative. The ability to extend the transport layer will enable the system
to remain competitive even in settings with novel architectures or special communication
hardware.

The ability to run the bypass protocols over new transport protocols raises questions for
future investigation. For example, one might run bypass CBCAST over a transport
layer with known realtime properties. Depending on the nature of these properties, such
a composed protocol could satisfy both sets of properties simultaneously, or could favor
one over the other. For example, the delay of flushing channels suggests that realtime
and virtual synchrony properties are fundamentally incompatible, but this still leaves
open the possibility of supporting a choice between weakening the realtime guarantees
to ensure that the system will be virtually synchronous and weakening virtual synchrony
to ensure that realtime deadlines are always respected. For many applications, such a
choice could lead to an extremely effective, tuned solution. Pursuing this idea, we see
the Isis system gradually evolving into a more modular structure composed of separable
facilities for group view management, enforcing causality, transporting data, and so forth.
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For a particular setting, one would select just those facilities actually needed. Such a
compositional programming style has been advocated by others, notably Larry Peterson
in his research on the Psync system.

8 Conclusions

We have presented a new scheme, the bypass protocol, for efficiently implementing a re-
liable, causally ordered multicast primitive. Intended for use in the Isis toolkit, it offers
a way to bypass the most costly aspects of IsIs while benefiting from virtual synchrony.
The bypass protocol is inexpensive, yields high performance, and scales well. Measured
speedups of more than an order of magnitude were obtained when the protocol was im-
plemented within Isis. Our conclusion is that systems such as Isis can achieve perfor-
mance competitive with the best existing multicast facilities - a finding contradicting the
widespread concern that fault-tolerance may be unacceptably costly.
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